

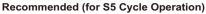
High Torque Optimized Output Torque & Inertia Moment High Precision

> Long Service Life **Low Noise**

High Precision Reducer

AD Series

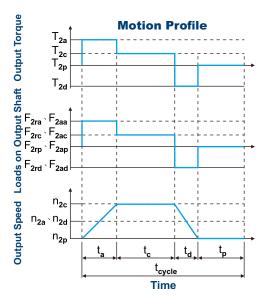
AH Series


AP Series

K Series

selection of the optimum gearbox

The general design is given for


$$\frac{\mathsf{J}_{\mathsf{L}}}{\mathsf{i}^2} \le 4 \times \mathsf{J}_{\mathsf{m}}$$

The optimal design is given for

$$\frac{\mathsf{J}_{\mathsf{L}}}{\mathsf{i}^2} \cong \mathsf{J}_{\mathsf{m}}$$

J, Load Inertia

J_m Motor Inertia

1. ED =
$$\frac{t_a + t_c^+ t_d}{t_{cycle}} x$$
 100%, $t_{work} = t_a + t_c^+ t_d$
Index : a. Acceleration, c. Constant,

2.
$$i \cong \frac{n_m}{n_{work}}$$

n_m Output Speed of the Motor

$$3. \ T_{2m} = \ 3\sqrt{\frac{n_{2a} \times t_a \times T_{2a}^{\ 3} + n_{2c} \times t_c \times T_{2c}^{\ 3} + n_{2d} \times t_d \times T_{2d}^{\ 3}}{n_{2a} \times t_a + n_{2c} \times t_c + n_{2d} \times t_d}}$$
(Eq.3)

4.
$$T_{2max} = T_{mB} \times i \times k_s \times \eta$$

where K is

3					
K _s	No. of Cycles / hr				
1.0	0 ~ 1,000				
1.1	1,000 ~ 1,500				
1.3	1,500 ~ 2,000				
1.6	2,000 ~ 3,000				
1.8	3,000 ~ 5,000				

T_{mB} Max. Output Torque of the Motor

5.
$$n_{2a} = n_{2d} = \frac{1}{2} \times n_{2c}$$

$$n_{2m} = \frac{n_{2a} \times t_a + n_{2c} \times t_c + n_{2d} \times t_d}{t_a + t_c + t_d}$$

$$n_{2N} = \frac{n_{1N}}{i}$$
(Eq.5)

6.
$$F_{2rm} = 3\sqrt{\frac{n_{2a} \times t_a \times F_{2ra}^{3} + n_{2c} \times t_c \times F_{2rc}^{3} + n_{2d} \times t_d \times F_{2rd}^{3}}{n_{2a} \times t_a^{4} n_{2c} \times t_c^{4} n_{2d} \times t_d}}$$

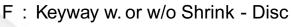
$$\mathsf{F}_{\mathsf{2am}} = \sqrt[3]{\frac{\mathsf{n}_{\mathsf{2a}} \times \mathsf{t}_{\mathsf{a}} \times \mathsf{F}_{\mathsf{2aa}}^{\phantom{\mathsf{3}}} + \mathsf{n}_{\mathsf{2c}} \times \mathsf{t}_{\mathsf{c}} \times \mathsf{F}_{\mathsf{2ac}}^{\phantom{\mathsf{3}}} + \mathsf{n}_{\mathsf{2d}} \times \mathsf{t}_{\mathsf{d}} \times \mathsf{F}_{\mathsf{2ad}}^{\phantom{\mathsf{3}}}}{\mathsf{n}_{\mathsf{2a}} \times \mathsf{t}_{\mathsf{d}}^{\mathsf{d}} \mathsf{n}_{\phantom{\mathsf{2c}}} \times \mathsf{t}_{\mathsf{d}}^{\mathsf{d}} \mathsf{n}_{\phantom{\mathsf{2d}}} \times \mathsf{t}_{\mathsf{d}}^{\mathsf{d}} \times \mathsf{F}_{\mathtt{2ad}}^{\phantom{\mathsf{3d}}}}{\left(\mathbf{Eq.6}\right)}}$$

Rack & Pinion

A: Curvic Plate

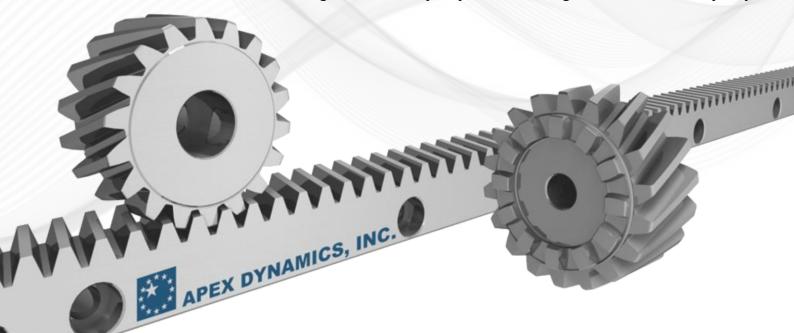
B: Welded Plate

C: Teeth Plate


Plate with Flange

D: DIN 5480

E: Keyway w/o Shrink - Disc



G: Long Shaft w. Keyway

H: Long Shaft without Keyway

Rack Calculation & Selection

 $F_{2T} = 2 \times T_{2B} / d$ d: Pitch Circle Diameter

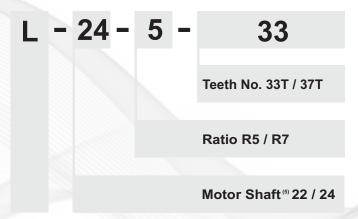
Application		Horizontal handling		Vertical lifting		
Unit		Application parameters				
Total load weight	М	Kg		Kg		
Speed	V	m/s		m/s		
Acceleration time	ta	s s				
Gravitational acceleration	g	9.8 m/s²		9.8 m/s ²	9.8 m/s ²	
Friction coefficient	μ	-				
Pitch circle diameter of pinion	d	mm mm		mm		
Other additional forces	F	N		N		
Safety factor	S _B (1)	- / /				
		Computational formulas				
		$\alpha = V / t\alpha$	(m/s ²)	$\alpha = V / t\alpha$	(m/s ²)	
Tangential force of rack	F _N	$F_N = M \times g \times \mu + M \times a + F$	(N)	$F_N = M \times g + M \times a + F$	(N)	
Torque	T _N	$T_N = (F_N \times d) / 2000$	(Nm)	$T_N = (F_N \times d) / 2000$	(Nm)	
Design demand torque	T _{NV}	$T_{NV} = T_N \times S_B$	(Nm)	$T_{NV} = T_N \times S_B$ (Nm)		
Max. Speed of pinion	N_V	$N_V = (V \times 19100) / d$	(rpm)	$N_V = (V \times 19100) / d$ (rpm)		

⁽¹⁾ Please consider the safety factor according to your experience and application, the general recommended range of 1 to 4 (S_B≒1 to 4).

Select a suitable pinion.

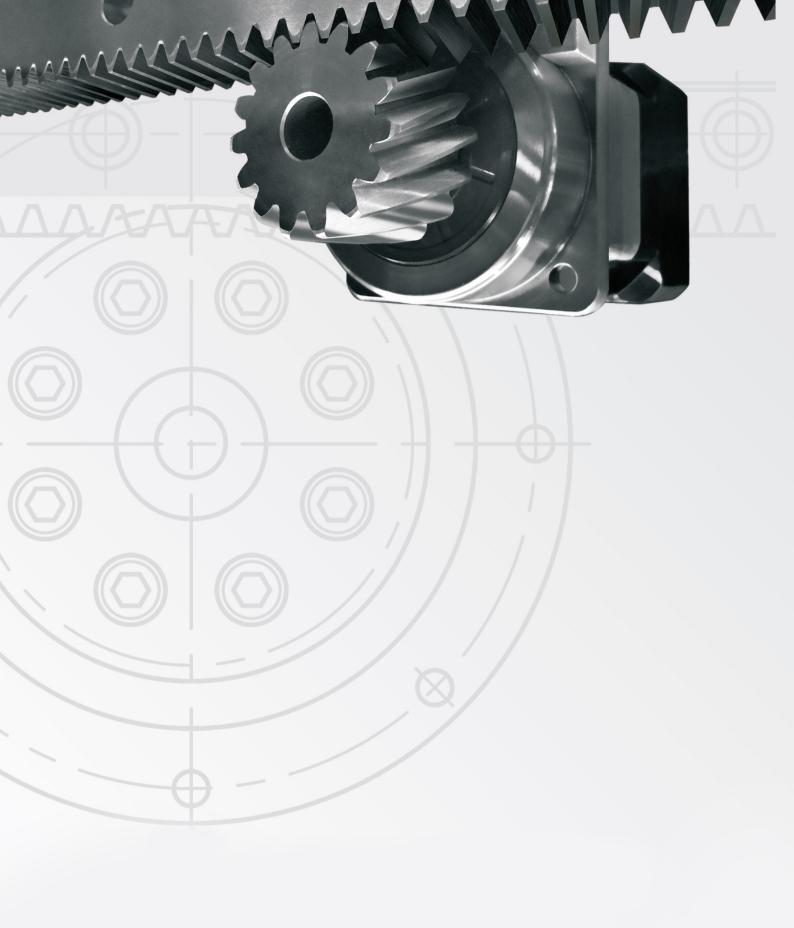
Calculate the design demand torque (T_{NV}) To choose T_{2B} (T_{NV}) according to the tablethe max. permitted torque and feed force of pinion. To select the appropriate gearbox and speed ratio to fit the torque.

Refer to APEX Dynamax for a more detailed calculation.


Linear Drive System For Laser Cutting Industry

Performance

Ratio ⁽¹⁾	5		7		
Pinion Module No.	2				
Pinion Teeth No.	33	37	33	37	
Nominal Output Torque T _{2N} Nm	165 130			30	
Max. Acceleration Torque T _{2B} Nm	247.5 195			95	
Emergency Stop Torque T _{2NOT} Nm	495 390			90	
Max. Drive Force F _{2T} N	6913	6172	5447	4863	
No Load Running Torque Nm	0.7				
Backlash ⁽²⁾ arcmin	≦ 3				
Torsional Rigidity Nm/arcmin	22				
Nominal Input Speed n _{1N} rpm	3,600				
Max. Input Speed n _{1B} rpm	6,000				
Max. Drive Speed V _{Max} m/s	4.4	3.1	4.9	3.5	
Service Life ⁽³⁾ hr	20,000				
Operating Temp. ° C	-10° C~ 90° C				
Lubrication	Synthetic Lubrication Grease				
Mounting Position	All Directions				
Running Noise ⁽⁴⁾ dB(A)	≦ 59				
Efficiency 1 %	≧ 97%				
Inertia kgcm. ²	4.52				


Order Code

- (1) Ratio ($i = N_{in} / N_{out}$)
- (2) Backlash is measured at 2% of Nominal Output Torque T_{2N}
- (3) Continuous operation is not recommended
- (4) These values are measured by gearbox with ratio 7 at 3,000 rpm without loading
- (5) Motor adapter specification please refer to the dimension of linear drive system

Automatic Lubrication System

PT Surya Sarana Dinamika

Perkantoran Mega Sunter B-40

Jl. Danau Sunter Selatan, Jakarta, 14350 Indonesia

p: (62-21) 6583 5077 - 78 | **f**: (62-21) 6583 5079 - 80

e: sales@suryasarana.com | **w** : www.suryasarana.com